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Progress  has  been  made  in  accurately  manipulating  the
size  and  shape  of  monodisperse  nanocrystals  over  past  30
years.  In  1993,  Bawendi et  al.  synthesized monodisperse CdS,
CdSe  and  CdTe  nanocrystals  with  similar  size  by  a  hot-injec-
tion method[1]. After two years, they prepared CdSe nanocrys-
tal  superlattices  by  self-assembling  method  with  two  distinct
morphologies:  faceted  colloidal  crystals  and  ordered  thin
films.  The  size  and  spacing  of  nanocrystals  were  controlled
with  a  nearly  atomic  precision[2].  Then,  engineering  morpho-
logy,  interaction  and  surrounding  environment  are  encour-
aged  to  construct  superlattices  at  atomic  scale.  Meanwhile,
the  advanced  technologies  like  electron  microscopy  and  X-
ray related tools help scientists to deeply understand the struc-
tures  and  properties  of  nanocrystal  superlattices[3].  Com-
pared to individual nanocrystal, their superlattices indicate col-
lective  properties  due  to  coupling  between  nanocrystals[4].
For  instance,  their  original  properties  are  enhanced  because
the  ordered  nanocrystals  interact  with  each  other  under  the
light,  electric or magnetic field; new properties can be gener-
ated  by  the  periodically  ordered  structures  of  the  assembly;
and  comprehensive  properties  can  be  obtained via assem-
bling nanocrystals with different functions.

Halide  perovskite  nanocrystals  rapidly  advances  in  re-
cent  years  due  to  the  tunable  bandgaps,  narrow  emission,
high  photoluminescence  quantum  yields,  and  short  radi-
ation lifetime. They can be synthesized by a hot-injection meth-
od  with  narrow-distributed  sizes,  yielding  nanoscale  building
blocks of superlattices. Especially, CsPbBr3 nanocrystal superlat-
tices attract  wide attention because of  the minibands caused
by  electronic  coupling  between  neighboring  nanocrystals[5],
low-threshold  two-photon-induced  gain[6],  long-range  ex-
citon diffusion[7], tunable anisotropic light emission, and super-
fluorescence[8].  Superfluorescence  is  a  collective  emission
from  lots  of  light-excited  individual  dipoles  unlike  fluores-
cence.  By  exchanging  virtual  photons,  the  quantum  states  of
dipoles  spontaneously  synchronize  and  are  excited  together,
yielding a strong emission, called superfluorescence. Its inten-
sity is much stronger than the sum of individual emitters.

CsPbBr3 nanocrystals  self-assembled  into  structurally
well-defined, long-range ordered, and densely-packed cuboid-
al  superlattices  on  silicon  substrates  by  a  solvent-drying-
induced  process,  indicating  quantum  coherence  for  emitting
superfluorescence[8].  Till now, superfluorescence was only ob-
served in a very few systems because of  the stringent produ-

cing conditions, e.g. high oscillator strength, low inhomogen-
eity,  small  exciton  dephasing.  Cubic  CsPbBr3 nanocrystals
with  a  mean  size  of  9.5  nm  can  moderate  quantum-confine-
ment  effect,  offering  narrow-band  emission.  The  superlat-
tices  exhibited  dynamically  red-shifted  emission  peak  with
more  than  20-fold  accelerated  radiative  decay,  extension  of
the  first-order  coherence  time  by  more  than  a  factor  of  four
and  photon  bunching.  Moreover,  the  superfluorescence  de-
cay demonstrates Burnham-Chiao ringing behavior at high ex-
citation density,  reflecting the  coherent  Rabi  interaction.  This
iconic  work  provides  potential  candidates  for  high-bright-
ness  and  multi-photon  quantum  light  sources,  enabling  the
utilization  of  coupling  effects  for  long-range  quantum  trans-
port and ultra-narrow tunable lasers.

In 2020, Zhou et al. generated a quantum coherence of di-
poles in CsPbBr3 nanocrystal superlattice and tuned the ultra-
fast  radiation  of  the  quantum  systems  by  introducing  optical
microcavities[9]. The stimulated radiation in the superlattice mi-
crocavity was not limited by classical population-inversion con-
dition, resulting in the dissipation of all in-phase dipoles in pi-
coseconds. The highly symmetric and long-range ordered su-
perlattice microcavity could have characteristics of both super-
fluorescence  and  stimulated  radiation  to  realize  cavity-en-
hanced  superfluorescence  (CESF).  Compared  to  monod-
isperse  CsPbBr3 nanocrystals  (~12  ns),  the  irradiation  time  of
superfluorescence  (~30  ps)  was  shortened  by  ~400  times,
while  that  for  CESF  (~4  ps)  was  shortened  by  ~3000  times.
Then,  the  essential  difference  between  CESF  and  classical
lasers was analyzed through a number of experiments. In clas-
sical lasers, excitons radiate rapidly above the threshold dens-
ity,  and  radiate  slowly  below  the  threshold  density.  While  in
CESF,  excitons  have  collaborative  quantum  states,  and  all  di-
poles  in  the  same  phase  dissipate  rapidly  by  a  single  pulse.
Based  on  the  quantum  properties  of  cooperative  excitons,  a
perovskite  nanocrystal  superlattice  microcavity  was  pro-
posed  as  a  THz  quantum  container.  The  excited  light  can
quickly  induce  carriers  with  high  concentration,  and  the  co-
operative  state  is  quickly  established  spontaneously via ex-
changing virtual photons, called the “Filled” state. When the re-
laxation  channel  of  CESF  opens,  the  quantum  container  is
quickly emptied, called the “Void” status.

In  2021,  ABX3 superlattices  were created via shape-direc-
ted  co-assembly  of  binary  or  ternary  elements,  analogous  to
the  lattice  structure  of  ionic  perovskites[10].  A,  B  and  X  posi-
tions are required to form nanocrystals for the single-compon-
ent  superlattices.  In  binary  ABX3 superlattice,  larger  spherical
Fe3O4 or NaGdF4 nanocrystals occupy A sites, while smaller cu-
bic  CsPbBr3 nanocrystals  locate  at  B  and  X  sites.  Tiny  change
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in  sizes  and  fractions  of  spherical  Fe3O4 and  cubic  CsPbBr3

nanocrystals can transform NaCl-type to ABX3-type binary su-
perlattices.  In  ternary  ABX3 superlattice,  B  position  is  re-
placed  by  truncated  cubic  PbS  nanocrystals.  The  respective
nanocrystal  sizes  are  carefully  adjusted  in  ternary  superlat-
tices consisting of cubic CsPbBr3 nanocrystals, spherical Fe3O4

nanocrystals  and  truncated  cubic  PbS  nanocrystals,  which
can assemble to fill ~92% of the space. The spherical nanocrys-
tals exhibit random orientation. While cubic CsPbBr3 nanocrys-
tals exhibit highly ordered orientation in all superlattices, giv-
ing  the  superfluorescence.  ABX3-type  superlattices  offer
strong  collective  emission  than  NaCl-type  superlattices,  due
to  stronger  coherent  coupling.  The  superfluorescence  fea-
tures  ultrafast  radiative  decay  (22  ps)  and  Burnham-Chiao
ringing behavior.

Superfluorescence was observed at extremely low temper-
ature,  because  the  synchronized dipoles  can be  disturbed by
thermal  noise.  In  2022,  room-temperature  superfluorescence
was  discovered  in  quasi-2D  PEA:CsPbBr3 films[11].  The  long
PEA cations separate PbI6 octahedra layers to form quantum-
well  structures,  which  can  be  considered  as  2D  hybrid  per-
ovskite  superlattices.  The  electronic  coherence  time  for
PEA:CsPbBr3 films  is  at  least  two  orders  of  magnitude  longer
than  that  of  inorganic  semiconductors.  Large  electronic  di-
poles have strong coupling to protect quantum coherence at
temperature as high as 300 K.

In  short,  quantum  coherence  yields  superfluorescence.
However,  the  superfluorescent  superlattice  is  only  found  in
highly-oriented  CsPbBr3-containing  assembly  so  far,  more
perovskite  superlattices  need  to  be  developed.  Future  re-
search  will  involve  perovskite  materials[12],  perovskite  crystal-
lization[13],  perovskite  nanocrystals[14],  stimulated emission[15],
and probably applications in light-emitting diodes[16].
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